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It is noted that the Van Hove self-correlation function Gs (r,t) for a dilute fluid is determined by a linear­
ized Boltzmann equation identical to that occurring in the theory of neutron diffusion. A simple model for 
the collision integral, in which a molecule emerges from a collision with a Maxwellian distribution, allows 
some interesting analytic results to be obtained. The double Fourier transform 5S (K,W), of Gs (r,t) is expressible 
in terms of the probability integral for complex arguments. Since S8(K,CO) is directly proportional to the 
Mossbauer line shape, the transition of the line shape from Doppler broadening to simple diffusion broaden­
ing is explicitly exhibited as a function of momentum transfer. The spatial moments of Gs (r,t) are calculated 
as a function of time. The model used gives the same mean-square displacement as does the Langevin 
equation. The resulting Gs(r,t) is not, however, Gaussian as is shown by the mean fourth power of the dis­
placement which is 25% greater at intermediate times than would be predicted by the Langevin equation. 
The non-Gaussian effects lead to an appreciable narrowing of SS(K,CO) for intermediate values of K. 

I. INTRODUCTION 

THE function Gs(r,t) was introduced by Van Hove1 

as the double Fourier transform of the differential 
energy transfer cross section, SS(K,O)) for the incoherent 
scattering of slow neutrons. It plays a similar role in 
determining the line shape of the Mossbauer line and of 
the Doppler broadened neutron absorption resonance 
line in a fluid.2 In the classical limit G6(r,t) is the 
probability per unit volume for finding an atom at the 
position r at time t if the same atom (or more precisely 
its nucleus) is known to have been at the origin at time 
zero. Recent work3'4 has clarified the relation of this 
classical limit to the quantum-mechanical process of 
slow neutron scattering. This work has confirmed the 
validity of analyzing incoherent neutron scattering from 
heavy monatomic fluids in terms of the classical Gb(r,t). 
We consider only this classically defined function and its 
Fourier transform in the present paper. 

A general description of Gs (r,/) in a classical fluid was 
first given by Vineyard,5 who introduced the Gaussian 
approximation 

G.(r ,0 « [7rw2(0]~3/2 exp£-r2/w2(t)l (1) 

which has been employed in most subsequent work. 
Non-Gaussian corrections have been considered by 
Schofleld6 in the limit of short times, and by Rahman, 
Singwi, and Sjolander7 in the limit of long times, but no 
quantitative estimates have been given for intermediate 
times where these corrections are expected to be largest. 
The Gaussian approximation leads naturally to the 
consideration of stochastic models for w(t) in analogy to 
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the theory of Brownian motion. This line of investiga­
tion was initiated by Vineyard6 and has been most ex­
tensively developed by Rahman, Singwi, and Sjolander.8 

Such descriptions have been useful in obtaining a 
semiquantitative understanding of slow-neutron scat­
tering data, but it seems appropriate now to shift to a 
more detailed molecular picture if we are to make most 
effective use of the more accurate neutron scattering 
data which are becoming available. 

A natural first step is to consider a dilute gas in which 
the atomic motions are determined by random binary 
collisions, and the distribution function satisfies the 
Boltzmann equation. We apply the Boltzmann equation 
on the microscopic scale associated with localizing an 
atom at the origin at time zero. The justification for 
using the Boltzmann equation at this fine a level of 
description is the demonstration by Grad9 "that the 
Boltzmann equation becomes more nearly valid as the 
density decreases, and that it is valid for arbitrarily 
large deviations from equilibrium within a mean free 
path and arbitrarily rapid fluctuations compared with 
the mean collision time; the limiting length is the 
diameter of a molecule and the limiting time is the mean 
duration of a collision." 

Since the disturbance we consider is of microscopically 
small amplitude, the Boltzmann equation (BE) that we 
must solve is linear. In addition to Gs(r,t) which satisfies 
a linear BE analagous to the one occurring in neutron 
diffusion, there is also a linear BE satisfied by the func­
tion G(r}t), which is defined as the probability per unit 
volume of finding any atom at the position r at time t 
given that an atom was at the origin at time zero. This 
latter linear BE is the usual linearized BE as it occurs, 
for example, in the theory of sound propagation in 
gases.10 In the BE giving Gs(r,t) momentum and energy 
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are transferred between the "test particle" and the other 
molecules. Thus, an approximation to the transition 
probability need not accurately satisfy the conservation 
laws dictated by the kinematics of binary collisions. I t 
is known,10 however, that energy and momentum conser­
vation must be exactly maintained if the linearized BE 
for G(r,t) is to properly describe sound propagation. In 
the present paper we consider only G8(r,t), for which a 
very simple kinetic model can be formulated. A calcula­
tion of G(r,i) using a kinetic model is necessarily more 
complicated because of the role of the conservation 
laws, and will be deferred to a later paper. I t should be 
emphasized that these kinetic models are derivative 
from the Boltzmann equation, and are thus relevant 
only for dilute gases and not for liquids. The models are 
useful, however, in that they demonstrate, in a simple 
and reasonably accurate manner, the effects of inter-
molecular collisions on the time-dependent correlation 
functions. 

II. FORMULATION OF THE PROBLEM 

The definition of the classical G8(r,i) corresponds to 
tagging an atom at a particular time with a marker 
which does not perturb the system, and then following 
the subsequent motion of the tagged atom. The function 
Gs(r,t) describes this motion on the average over a large 
number of systems. In a dilute gas the motion of the 
tagged atom is determined entirely by free streaming 
and by random binary collisions with the untagged 
atoms of the gas. The appropriate description is thus the 
linear BE describing the diffusion of a dilute gas of 
type-^4 atoms in a gas of type-B atoms which is in 
equilibrium. We can thus neglect A-A collisions as being 
of negligible frequency, and B-B collisions play no role 
since the B atoms are in equilibrium. The A atoms differ 
from the B atoms only by their distinguishability, but 
are dynamically identical. In neutron scattering, this 
distinguishability arises from the nuclear spin flip or 
isotopic incoherence. In the Mossbauer case, it arises 
from the emission of a 7 ray by a particular nucleus. 
The linear BE describing the average subsequent motion 
of the tagged atom is of exactly the same form as the 
governing equation in neutron transport theory. The 
particular form of the collision integral is quite different, 
in general, but the analogy to certain primitive models 
of neutron thermalization is quite close. The active 
recent study of the latter problem in connection with its 
applications to reactor technology can thus be exploited 
in the present context. 

The linear BE from which we obtain Gs(r}t) is not an 
equation for G8(r,t), but for the density f(r,v,t) in phase 
space. The equation is 

[ - + v . V + a ( w ) J / ( r , v , / ) = fw(?,v)f(iJ,t)dW9 (2) 

where TF(v,v')dV is the transition probability per unit 
time for an atom of velocity v to make a scattering 

collision into the element dz\' at velocity v'. The scat­
tering probability per unit time is given by 

a(v)= / W(yJ)dh' (3) 

so that the number of particles is conserved in a 
collision. Since we must sample an ensemble of systems 
at thermal equilibrium to determine G8(r,t) the ap­
propriate initial condition is 

/(r,v,0) = M v ) S ( r ) , (4) 
where 

fM(v) = (m/2wkT)^2 exp(~mv2/2kT) (5) 

is the equilibrium Maxwellian distribution at the gas 
temperature. The function Gs(r,t) is obtained by inte­
grating over velocity space: 

G8(r. ;*)= ff(r,y,t)<Pv. (6) 

From Eqs. (2)-(4) we see that Gs(r,t) has the required 
general properties that 

and 
G.(r,0) = *(r) 

G.(r,t)<Pr=4<ir / Gs{r,t)rHr= 1. [G.(r,t)<Pr=4*[ 

(7) 

(8) 

In most problems in neutron scattering it is more con­
venient to deal with the so-called intermediate scat­
tering function 

Xs(ic,t)= / exp(iK*T)G8(r,t)d?r, (9) 

rather than with Gs {r,t) directly. Introducing the spatial 
Fourier transform of the phase-space density 

/ ( K , V , * ) = f exp(iK.r)/(r,v,*)dV (10) 

our linear BE becomes 

•d 
\-+i 
Ldt 

tK-v+a(fl) / («,v,0 

= iwwrtKtcSdfflv', (it) 

(12) 

with the initial condition 

/ ( K , V , 0 ) = / M ( V ) . 

The intermediate scattering function is related to the 
phase-space density through 

X.b,t)= [jfavdfflv, (13) 
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and has the general properties 

XS(K,0) = X S (0 ,0=1 , (14) 

which follow from (7) and (8). From the isotropy of the 
system Xs(/c,/) depends only on the magnitude of K. 

Finally the quantity of direct interest in neutron 
scattering experiments is 

1 /•« 
S,(K,O>) = — / 

2TT J_0 

e-io>tXs(K,t)dt. (15) 

Since Xs (K,/) is determined from an initial value problem, 
we must specify its behavior for negative times in order 
to completely define SS(K,U). T O do this we recall that 
Ss(/c,a)) is, in general, a real function. For a classical 
system, SS(K,OO) is an even function of o>, and Xs(/c,£) is a 
real even function of time. Introducing the Laplace 
transform for imaginary argument 

and 
Jo 

/ ( K , V , W ) = / e - £ » < / ( K , V ) , 

Q(K,W)= f(K,v,w)dsv= J e-*"x.(K,t)dt, (17) 

we have 

s.M= (i/2x)KM)+g*(«,«)], (is) 

where /(K,V,O>) is the solution of 

pco+tK-v+a (»)]/(*, v,w) 

= [w(v',v)f(Ky,o>)dV+fM(v). (19) 

This completes the formal preliminaries. We turn now 
to actual calculations using a simple model for PF(v,v'). 

III. SIMPLE KINETIC MODEL 

The simplest model for JF(v,v') which conserves 
particle number and satisfies the "detailed balance" 
condition 

W W ) / M ( V ) = W(Y',Y)fM(Y') (20) 

is the single-relaxation-time model 

W(?,Y)~afM(v). (21) 

This model was first introduced by Bohm and Gross11 in 
considering the collisional damping of plasma oscilla­
tions. I t is a more appropriate model for our present 
test particle problem because energy and momentum 
are not conserved even by the correct collision terms in 
the BE. The same model has been recently used in a 
mathematically similar context by Corngold et alP in 
the study of neutron thermalization. 

Although the approximation (21) cannot hold exactly 

11 D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949). 
12 Noel Corngold, Paul Michael, and Warren Wollman, Nucl. 

Sci. Eng. 15, 13 (1963). 

for any binary collision kernel, it does not violate any of 
the basic constraints of the problem. One can think of it 
as an absorption followed by a re-emission with an 
equilibrium velocity distribution. In a sense, it corre­
sponds to assigning to a single collision the actual 
properties of multiple collisions. I t is thus appropriate to 
say that (21) corresponds to the maximum rate of 
thermalization consistent with a given collision rate a. 
Since we are interested in quantities like Gs(r,t) which 
are integrated over all velocities, we might at first sight 
expect that the results would be insensitive to the 
thermalization rate. From the closely analogous "diffu­
sion cooling" phenomenon13 in the decay of a ther-
malized neutron pulse, however, we know that this is not 
quite the case. 

If we substitute (21) into (19), divide by (a-\-ia> 
+iic-v), and integrate over all velocities, we find that 

QMZi+aQMir^iM, (22) 

(16) where /(K,O>) is defined by (18), 

i*(K,0>)=7T 1/2 / 

J —o 

-u2[a+iu+iKVtfi]-ldu, (23) 

and v0= {2kT/m)l'\ 

Introducing the variables 

x=— W/HVQ, y=a/KVo, and z=x-\-iy, (24) 

we can write 

aI(K)o)) = T1/2yw(z) = Trl/2y[u(x,y)+iv(x,y)2, (25) 

where 

w(z) = iir-1 (rl\z-tyidt (26) 

is the probability integral for complex argument and is a 
tabulated function.14 

Finally, we introduce 

U(x,y) = 7r1/2;y^(#,;y), 

V(x,y) = ir1/2yv(x,y), 

and use (18) to obtain 

1 U(l-U)-V2 

Ss (K,O)) — 
ira ( l - Z 7 ) 2 + y 2 

(27) 

(28) 

I t is readily verified that (28) has the correct limiting 
behavior for both large and small momentum transfer. 
For large momentum transfer, we can neglect collisions, 
and let y approach zero. This yields the familiar result 

13 The phenomenon was first described by G. Von Dardel and 
A. Sjosstrand, Phys. Rev. 96, 1245 (1954). The theory is discussed 
by M. Nelkin, Nucl. Sci. Eng. 7, 210 (1960). 

14 V. N. Faddeyeva and N. M. Terent'ev, Tables of the Proba­
bility Integral for Complex Arguments (Pergamon Press, Inc., 
New York, 1961). 
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for an ideal gas in the classical limit 

Hm5s(/c,w)= (K^OTT172)-1 exp[—CO2/KW]-

1.0 

(29) 

In the limit of small momentum transfer, we expect to 
obtain the simple diffusion result first suggested by 
Vineyard.5 To evaluate SS(K,O)) in this limit of large y 
we use the asymptotic expression14 

w(z)^i7r-1^z(z2-'^-1 (30) 
to obtain 

S8(K,O))~ 
7ra l+4 ( / - l ) x 2 +4^ 4 (31) 

as a good approximation for all values of x, if y is 
sufficiently large. For x<y~x, where S is appreciable, 
(31) is accurately given by 

2 y2 

S . ( K , « ) « . (32) 
ira l+4x2y2 

We see in Sec. IV that the coefficient of self diffusion for 
this model is given by 

D=v0
2/2a (S3) 

so that (32) can be expressed in the more familiar form 

1 DK2 

SS(K,O))~-
TTO)2+(DK2)2 

(34) 

Consider SS(K,Q)) as the line shape for a Mossbauer 
line. In this case K is fixed by the Y-ray energy and the 
mass of the nucleus, and hoo is the energy shift of the 
emitted or absorbed y ray. In the limit that K is large we 
have the familiar Doppler line shape (29). In the 
opposite limit we have the equally familiar limit of 
diffusion broadening. The basic result of the present 
paper is the expression (28) which allows one to calcu­
late the line shape analytically in the intermediate 
region. This is possible only because we have used the 
grossly simplified expression (21) for the collision 
integral in the BE. 

The characteristic narrowing of the line shape due to 
collisions is best seen by plotting 

R (x,y) = ay^Ss (K,OJ) (35) 

as a function of x for fixed y. This function is normalized 
to unit area when integrated over all x. We plot this 
result in Fig. 1 for various values of y ranging from zero 
to one. The approach to the simple diffusion line shape 
for small K is best displayed by plotting 

F(S,y)=«r*S,M 
as a function of 

£=xy=a>/2DK2 

for fixed y. In the limit of large y we have 

2 1 
limF({,y) = . 
^°° T l+4f2 

(36) 

(37) 
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FIG, 1. The deviations from the ideal-gas line shape as the 
collision rate is increased are exhibited by plotting KVQSS(K,CS) as a 
function of (CO/KVO) for values of y=(a/KVo) ranging from 0 to 1. 
The curve for y = 0 is the ideal-gas result of Eq. (29). 

In Fig. 2 we plot F(£,y) and obtain the characteristic 
result that the line shape is narrower than the simple 
diffusion line shape, but approaches it for large y. The 
result for y=5 is almost identical to the limiting result 
(38). The dashed curves give the results in the Gaussian 
approximation, and are discussed in Sec. IV. 

IV. SPATIAL MOMENTS AND THE GAUSSIAN 
APPROXIMATION 

The kinetic model (21) does not allow an analytic 
calculation of XS(K,/) or Gs(r,t) as it does for SS(K,O)), but 
it does allow the analytic calculation of the spatial 
moments of Gs(r,t) as affunction of time. To do this 
calculation we go back to (11), and make the expansion 

w=0 1=0 

where 
/x= (V'K/KV). (40) 

Substituting (39) into (11), and using (21) and the 
spherical harmonics addition theorem, we obtain the set 
of equations, 

(«+-)/„=.( /H-l / \ 
""/«—l.H-H fn—1,1-1 I 

2/+3 2 / -1 / 

+fu(v) ffnidhdi.o, (41) 
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FIG. 2. The deviations from the simple diffusion line shape as the 
collision rate is decreased are exhibited by plotting 2DK2SS(K,CO) as 
a function of (O>/2DK2) for values of y ranging from 1 to 5. The 
curve for y = 5 is almost identical to the simple diffusion result of 
Eq. (34) which would apply in the limit as y approaches infinity. 
The dashed curves refer to the Gaussian approximation of 
Eq. (49). 

where fni=0 for n<0. The initial conditions are 

fni(vfl) = fM(v)8n,<$i.o. (42) 

The set of equations (41) is a straightforward gener­
alization of the time-dependent case of the "moments 
form" of the BE as used in neutron transport theory.15 

The further generalization to an arbitrary W(v',v) is 
also straightforward, but will not be used here. With the 
initial conditions (42) the functions fni(v,t) are identi­
cally zero unless n-\-l is even and n>L 

The quantities of greatest physical interest are the 
spatial moments of Gs(r,f) 

where 
<r»»(fl>=(2«+l)!G2n(0, 

/»0O 

J o 

(43) 

(44) 

We can integrate the set of equations (41) in an ap­
propriate order, beginning with fn(v,t) to obtain 

and 
G2,0(t)=W2a%T~(l-e-T)l (45) 

Gi,o(t)= W / 4 a 4 ) [ | r 2 + ( r 2 + 3 r + 3 ) e - - 3 ] , (46) 

where r—at. 
15 A. Weinberg and E. P. Wigner, The Physical Theory of Neutron 

Chain Reactions (The University of Chicago Press, Chicago, 1958), 
pp. 365-367. 

The coefficient of self diffusion D is defined by 

t—>0O 
(47) 

and thus has the value (z>o2/2a:) for our approximate 
collision integral. The expression (45) gives the same 
mean-square displacement as is given by a simple 
Langevin equation16 with damping constant a. For the 
Langevin equation, however, Gs(r,t) is a Gaussian of the 
form of Eq. (1) so that 

<>W<^)>2=5/3 

for all times. Examination of Eqs. (45) and (46) shows 
that (48) holds for our model in the limit of short and 
long times, but not at intermediate times. In Fig. 3 we 
plot the ratio 

3 (r\t)) _ 2G4to(0 
(48) 

as a function of r = a t . We see that it reaches a maximum 
of 1.22 at T = 4 . 

To compare our analytic calculations of S8(K,CO) with 
the Gaussian approximation, we can use a result of 
Singwi and Sjolander17 for the Fourier transform of 
exp£—K2G2,o(0] W l t n £2,o(0 given by (45). Their result 
is given as an infinite series which is rapidly convergent 
for large values of y and is thus most directly comparable 
with Eq. (36). The result is 

^ ° ( f j ) = « A ~ 1 / c o s c o / exp[-K 2G 2 ,o(0]* 
Jo 

2 / 1 \ co ( - 1 ) " 
= - e x p ~ : E — 

X (IX 
\2-yV 

(l+2ny2) 

If I (l+2ny2Y+4:? 
(49) 

For y = 5 this is practically identical to the simple 
diffusion result (38) which is the first term in the series. 
The results for y= 1 and y—2 are plotted as the dashed 
lines in Fig. 2. I t is seen that the Gaussian approxima­
tion gives an appreciably broader line than does the 
exact solution for this model. 

From Eqs. (45) and (46) it follows that the short time 
behavior of the ratio (48) is given by 

15 
(50) 

This disagrees with a general result of Schofield6 who 

16 To be more precise we refer to the Langevin equation for a 
free particle with an initially Maxwellian distribution of velocities. 
The displacement distribution for this case was shown to be 
Gaussian by J. L. Doob, Ann. Math. 43, 351 (1942) [reprinted in 
Noise and Stochastic Processes, edited by Nelson Wax (Dover 
Publications, Inc., New York, 1954)]. 

17 K. S. Singwi and A. Sjolander, Phys. Rev. 119, 863 (1960). 
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proved that departures from the Gaussian approxima­
tion for a classical system are of order ts at short times. 
This disagreement comes from our use of a BE rather 
than from the approximation (21), and reflects the error 
in replacing the dynamics of the system by random 
collisions at short times. (Only in the fictitious limiting 
case of a rigid-sphere fluid would we expect the result 
from the BE to be preferable to Schofield's result which 
was derived from general dynamical arguments.) We 
thus cannot expect our present results to give correctly 
the Placzek moments,18 

0}2nSs(K,0))do) , (51) 

which depend on the analytic behavior of Gs(ryt) at 
short times. The entire basis of the BE as an approxi­
mate description rests on the unimportance of times 
short compared to the duration of a collision. It is 
precisely this short time scale, however, which de­
termines the moments (51). 

V. DISCUSSION 

The calculation of the present paper is applicable to 
Gs(r,t) in monatomic gases. The parameter a can be 
chosen to yield the observed diffusion coefficient. Under 
some circumstances Ss (/c,o>) is directly observable in a 
gas as the line shape for optical emission where the 
Doppler broadening is reduced by collisions with a 
buffer gas.19 To the authors' knowledge there is no ex­
perimental data on the incomplete collisional narrowing 
that would occur if the number of collisions during the 
relevant time scale is not large. The present model 
would apply directly in such circumstances. 

The available data for Gs(r,t) come from neutron 
inelastic scattering20 and the Mossbauer line shape21 in 
liquids. The analysis of these data shows8 that a quasi-
crystalline model is more appropriate than a gas model 
of the type used here. One feature of the present analysis 
which is, however, qualitatively in agreement with these 
experiments is the departure from the Gaussian ap­
proximation. From the result plotted in Fig. 3 it follows 
that Xs(ic,t) decays less rapidly with increasing K2 than 
does exp[—K2G2>0(0]> a n d that this effect is most pro­
nounced at intermediate times. These features are 

18 G. Placzek, Phys. Rev. 86, 377 (1952). 
" R . H. Dicke, Phys. Rev. 89, 472 (1953); J. P. Wittke and 

R. H. Dicke, ibid. 103, 620 (1956). 
20 See Proceedings of the 1962 Chalk River Conference (Inter­

national Atomic Energy Agency, Vienna, 1963), Vol. 1. 
21 P. P. Craig and N. Sutin, Phys. Rev. Letters 11, 460 (1963). 
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FIG. 3. The non-Gaussian behavior of the present model is 
illustrated by plotting 3</-4(*)>/5(>'2W>2 as a function of at. If 
Gs(r,t) were Gaussian, this ratio would be one at all times. 

present in the analysis of Pope et al.22 but a quantitative 
comparison is not appropriate. 

One can proceed in either of two directions from the 
present work. One approach is to study the dilute gas 
with collisions as a model system, and to thoroughly 
understand the behavior of G8(r,t) and G(r,t) by ac­
curately solving the BE for physically reasonable 
interatomic force laws. The present work and its existing 
extension23 to G(r,t) can then be considered as illus­
trative of the kind of results that can be obtained. Work 
in this direction is certainly feasible, and is desirable to 
put our understanding of time dependent correlations in 
fluids on a sounder theoretical basis. It is not likely to 
lead, however, to any direct comparison between theory 
and experiment. A more exciting possibility, but one 
which is both ambiguous and difficult, is to derive or 
postulate kinetic equations applicable to dense fluids. 
Such an approach puts the physical problem on the 
intuitively accessible level of a kinetic equation, and 
separates the complex but relatively straightforward 
problem of solving the resulting kinetic equation. 
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